The development of an intelligent ultrasonic aspirator controlled by a fiberoptic neoplasm sensor that detects 5-aminolevulinic acid-derived porphyrin fluorescence presents a significant advancement in glioma surgery. By leveraging the fluorescence phenomenon associated with 5-aminolevulinic acid in malignant neoplasms, this device integrates an excitation laser and a high-sensitivity photodiode into the tip of an ultrasonic aspirator handpiece. This setup allows for real-time tumor fluorescence detection, which in turn modulates the aspirator’s power based on fluorescence intensity. Preliminary testing demonstrated high sensitivity, with the device capable of differentiating between weak, strong, and no fluorescence. The sensor sensitivity was comparable to human visual perception, enabling effective tumor differentiation. Tumors with strong fluorescence were effectively crushed, while the aspirator ceased operation in non-fluorescent areas, enabling precise tissue resection. Furthermore, the device functioned efficiently in bright surgical environments and was designed to maintain a clean sensor tip through constant saline irrigation. The system was successfully applied in a surgical case of recurrent glioblastoma, selectively removing tumor tissue while preserving surrounding brain tissue. This innovative approach shows promise for safer, more efficient glioma surgeries and may pave the way for sensor-based robotic surgical systems integrated with navigation technologies.
Loading....